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Abstract

The dynamic geological and climatological history of Southeast Asia has spawned a com-

plex array of ecosystems and 12 of the 37 known cat species, making it the most felid-rich

region in the world. To examine the evolutionary histories of these poorly studied fauna,

we compared phylogeography of six species (leopard cat Prionailurus bengalensis, fishing
cat P. viverrinus, Asiatic golden cat Pardofelis temminckii, marbled cat P. marmorata,
tiger Panthera tigris and leopard P. pardus) by sequencing over 5 kb of DNA each from

445 specimens at multiple loci of mtDNA, Y and X chromosomes. All species except the

leopard displayed significant phylogenetic partitions between Indochina and Sunda-

land, with the central Thai–Malay Peninsula serving as the biogeographic boundary.

Concordant mtDNA and nuclear DNA genealogies revealed deep Indochinese–Sundaic
divergences around 2 MYA in both P. bengalensis and P. marmorata comparable to pre-

viously described interspecific distances within Felidae. The divergence coincided with

serial sea level rises during the late Pliocene and early Pleistocene, and was probably

reinforced by repeated isolation events associated with environmental changes through-

out the Pleistocene. Indochinese–Sundaic differentiations within P. tigris and P. tem-
minckii were more recent at 72–108 and 250–1570 kya, respectively. Overall, these results

illuminate unexpected, deep vicariance events in Southeast Asian felids and provide

compelling evidence of species-level distinction between the Indochinese and Sundaic

populations in the leopard cat and marbled cat. Broader sampling and further molecular

and morphometric analyses of these species will be instrumental in defining conserva-

tion units and effectively preserving Southeast Asian biodiversity.
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Introduction

Sundaland comprises the Thai–Malay Peninsula and

islands on the Sunda Shelf including Java, Sumatra and

Borneo and is considered one of the most important

biodiversity hotspots in the world (Myers et al. 2000).

To its north lies the Indochinese bioregion, encom-

passing east India, southwest China, Vietnam, Laos,

Cambodia, Myanmar and Thailand. Genetic studies

have distinguished assemblages of amphibians (Emer-

son et al. 2000), reptiles (Inger & Voris 2001), birds

(Hughes et al. 2003), mammals (Corbet & Hill 1992;
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Tougard 2001; Tosi et al. 2002; Woodruff & Turner

2009), freshwater crustaceans (de Bruyn et al. 2005) and

insects (Corbet & Pendlebury 1992) limited to varying

degrees by the Isthmus of Kra (10°300N), a narrow land

bridge connecting the Thai–Malay Peninsula with main-

land Southeast Asia (Fig. 1). Woodruff (2003) hypothe-

sized that periods >1 MY of marine transgressions

submerging the Isthmus (>100 m above present-day sea

level) during the early/middle Miocene and the early

Pliocene (24–13, 5.5–4 and 3 MYA) resulted in current

biogeographical patterns. Although a refinement of the

global glacioeustatic curve identified no sea level rise

greater than 100 m above the present-day level in the

last 5 MY, it alternatively proposed at least 58 rapid

rises over 40 m, which while not transgressing the Isth-

mus, certainly reduced the width of the Thai–Malay

Peninsula. Such frequent rises in sea level could have

repeatedly compressed the area of habitat available on

the narrow Peninsula, driving Indochinese–Sundaic fau-

nal differentiation (Lisiecki & Raymo 2005; Miller et al.

2005; Woodruff & Turner 2009). The exact biogeograph-

ic boundaries vary across species and primarily cluster

in the northern and central Thai–Malay Peninsula

(5–10°N, Woodruff & Turner 2009).

During the Pleistocene, sea level fluctuations repeat-

edly exposed vast areas of the Sunda Shelf and formed

land bridges among the islands and mainland. As

recently as the last glacial maximum (LGM, c. 20 kya),

Borneo, Sumatra, Java, the Thai–Malay Peninsula and

Indochina formed a single land block (Wallace 1876;

Molengraaff & Weber 1921). Although the Pleistocene

land bridges may have enabled widespread faunal

movement (Voris 2000; Meijaard & van der Zon 2003),

recent studies indicate that effective dispersal of some
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mammals was limited, since many species, including

murine rodents (Gorog et al. 2004), leopards (Uphyrkina

et al. 2001), colugos (Janecka et al. 2008), langurs (Roos

et al. 2008; Meyer et al. 2011), clouded leopards (Buck-

ley-Beason et al. 2006), and gymnures (Ruedi & Fuma-

galli 1996), display a much older time of vicariant

isolation. Distinguishing historic vicariant population

differentiation from recent migrations and dispersals

associated with LGM land bridge formations is possible

via a comparative phylogeography approach (Hewitt

2000; Moritz et al. 2000).

Fluctuating geological and climatological conditions

in Southeast Asia coincided with the initial rapid radia-

tion of major felid lineages around 10 MYA. The region

is home to 12 of the 37 recognized modern Felidae spe-

cies (Johnson et al. 2006), making it the most felid-rich

region in the world. Each of these species is listed in

CITES I or II as endangered, rare and protected over

most of their remaining distribution (Table S2, Support-

ing information). Despite their high conservation prior-

ity, these wild cats remain poorly investigated and are

threatened by habitat loss, fragmentation and illegal

hunting (Nowell & Jackson 1996).

Many felid species in Southeast Asia have distribu-

tion patterns corresponding to major geographic divi-

sions (Fig. 1). For example, the jungle cat (Felis chaus)

occurs only north of the Thai–Malay Peninsula, while

the flat-headed cat (Prionailurus planiceps) is restricted to

the Thai–Malay Peninsula, Sumatra and Borneo south

of the Thailand–Malaysia Boundary. The Asiatic golden

cat (Pardofelis temminckii) occurs widely throughout

Indochina, southwest China, the Thai–Malay Peninsula

and Sumatra, but not Borneo. The bay cat (Pardofelis

badia), a species closely related to P. temminckii, only

occurs on Borneo and may be considered an island

form of P. temminckii. The third species in the genus

Pardofelis, the marbled cat (P. marmorata), overlaps the

range of the other two and covers Indochina, the Thai–

Malay Peninsula, Sumatra and Borneo. The fishing cat

(Prionailurus viverrinus) has a discontinuous distribution

in Indochina, Sumatra, Java, the northern Indian sub-

continent and Sri Lanka. It is absent from most of the

Indian subcontinent and the Thai–Malay Peninsula,

although a few records from the southern Peninsula

exist (Melisch 1995). The leopard cat (P. bengalensis), a

sister species of P. viverrinus and the most common

wild cat in Asia, ranges from the Russian Far East to

Indonesian islands, and from India and Pakistan to the

Philippines. The absence of P. bengalensis from Sri

Lanka and central India is balanced by the presence

of another Prionailurus species, the rusty-spotted cat

(P. rubiginosus, Mukherjee et al. 2010).

The tiger (Panthera tigris), leopard (P. pardus) and

clouded leopard (Neofelis nebulosa) have relatively

continuous distributions in Southeast Asia. Significant

population genetic structure has been discovered in

tigers, leading to the recognition of tigers on the Thai–

Malay Peninsula as a distinct subspecies, the Malayan

tiger (P. t. jacksoni) (Luo et al. 2004). Further, the Sunda-

ic clouded leopard is recognized as a new species of

clouded leopard (Neofelis diardi) and has been distinct

from the Indochinese clouded leopard (N. nebulosa) for

1–1.5 MY (Buckley-Beason et al. 2006; Kitchener et al.

2006; Wilting et al. 2007).

The sympatric occurrence and overall geographic

structure of wild felids in Southeast Asia is an excel-

lent model to test different biogeographic scenarios in

Sundaland and Indochina. Here, we test the hypothe-

sis that the central and northern Thai–Malay Penin-

sula (around southern Thailand and the Thailand–

Malaysia border, and not confined to the Isthmus of

Kra) serves as an important biogeographic barrier that

has been influential in the diversification of regional

fauna. We compared phylogeographical patterns and

demographic histories of the tiger and leopard (Pan-

thera spp.), leopard cat and fishing cat (Prionailurus

spp.), and Asiatic golden cat and marbled cat (Pardof-

elis spp.) to capture the evolutionary history of the

populations or species. Multiple sets of molecular

genetic markers were examined: (i) mtDNA sequences

that cover CytB, 16S and ATP8; (ii) Y-chromosome ha-

plotyping system that includes four introns (SMCY3,

SMCY7, DBY7 and UTY11) and one Y-linked micro-

satellite; and (iii) X-chromosome nuclear introns in

PLP1.

Methods

Samples

We obtained samples from 445 individuals (Fig. 1)

across six focal species (134 tigers, 166 leopards, 61

leopard cats, 22 fishing cats, 44 Asiatic golden cats and

16 marbled cats) from their Asian ranges, with a partic-

ular emphasis on the northern Indochinese and south-

ern Sundaic regions (Table 1, Table S1, Table S2

Supporting information). Two flat-headed cats (Prio-

nailurus planiceps) were included in some of the analy-

ses. Individuals were selected with known geographic

origins and were presumed to be unrelated. Voucher

samples from the tiger and leopard have been used in

previous studies (Uphyrkina et al. 2001; Luo et al. 2004),

and 53 leopard samples were collected from China and

Southeast Asia in this study. Samples were collected in

compliance with Federal Fish and Wildlife permits

issued to SJO at the National Cancer Institute, NIH, by

the US Fish and Wildlife Service. Genomic DNA was

extracted using DNeasy Tissue Extraction Kits (QIA-

© 2014 John Wiley & Sons Ltd
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GEN) from whole blood, tissue or skin fibroblast cell

culture, following the manufacturer’s protocols.

Multilocus genetic marker system

Primer sets for amplifying over 5 kb of combined

mtDNA, autosomal DNA, X- and Y-chromosome nucleo-

tide sequences are summarized in Table S3 and Table S5

(Supporting information). The 1792 bp of mtDNA

sequences spanned cytochrome b (CytB, 1240 bp), AT-

Pase8 (ATP8, 180 bp) and 16S ribosomal DNA (16S,

370 bp). Primers CbM1 and CbMR2 were used to amplify

the complete CytB gene (1240 bp) and three internal

primers (CbM2, FBEN3 and FBEN2) for sequencing PCR

products (Tamada et al. 2008). Sequences of mitochon-

drial NADH dehydrogenase subunit 5 (ND5) were

obtained using primers and conditions described previ-

ously (Uphyrkina et al. 2001) to assess phylogenetic rela-

tionships between leopard populations from Indochina

and the Thai–Malay Peninsula. The Y-chromosome hapl-

otypes including 2154 bp of intronic regions of three

Y-linked genes (DBY7, SMCY3, SMCY7 and UTY11) and

one Y-linked microsatellite SMCY7-STR were generated

as described by Luo et al. (2007).

MtDNA and Y-chromosome haplotype analyses,
phylogeny and coalescence dating

Phylogenetic analyses among mtDNA and Y-chromo-

some haplotypes were conducted using multiple

approaches. A maximum parsimony (MP) analysis with

a heuristic search, random addition of taxa and tree-

bisection–reconnection branch-swapping (indels are

treated as missing data), a minimum evolution (ME)

heuristic search approach with neighbour-joining (NJ)

trees constructed from Kimura 2-parameter distances

followed by a branch-swapping procedure, and a maxi-

mum-likelihood (ML) analysis with the best evolution-

ary model selected with JMODELTEST v2.1.4 (Posada 2008)

were performed with PAUP* v4.0b10 (Swofford 2001).

The reliability of tree topologies was assessed by 1000

bootstrap iterations for the MP and NJ approaches and

100 for the ML approach. Construction of ML trees was

also performed in RAxML executing 1000 rapid boot-

strap inferences, with GTR substitution matrix and

GAMMA or GAMMA+P-Invar model of rate heteroge-

neity. Bayesian inference was conducted with MRBAYES

v3.2.0 (Ronquist & Huelsenbeck 2003), using both sepa-

rate gene sets of mtDNA and Y chromosome concate-

nated haplotypes and a combined data set of mtDNA

and Y sequences, with the best-fit evolutionary model

estimated from JMODELTEST. The combined data set was

partitioned into mitochondrial and Y-chromosome gene

regions when analysed, with appropriate evolutionary

models set for each partition and parameters unlinked.

In MRBAYES, all analyses consisted of two simultaneous,

independent Markov chain Monte Carlo (MCMC) runs

starting from different random trees, each with three

heated chains and one cold chain, for 2 000 000

Table 1 Estimates of molecular genetic variation from combined mtDNA sequences

Species Populations N

Length

(bp)

Number of

haplotypes

Number of

variable sites*

Percentage

variable sites

Mean number of

pairwise

differences (�SD)

Nucleotide

diversity (p�SD)Ti Tv I Total

Prionailurus

bengalensis

All 61 1792 20 91 4 1 96 5.36 33.797 � 14.930 0.0189 � 0.00925

Indochina 36 1792 14 29 0 0 29 1.62 3.765 � 1.943 0.00210 � 0.00121

Sunda 25 1792 8 72 4 1 77 4.3 12.033 � 5.630 0.00673 � 0.00351

Prionailurus

viverrinus

Indochina 17 1792 11 32 2 0 34 1.90 10.441 � 5.010 0.00584 � 0.00313

Pardofelis

temminckii

All 38 1220 13 22 0 0 22 2.21 3.994 � 2.042 0.00328 � 0.00186

Indochina 30 1220 11 13 0 0 13 1.07 1.497 � 0.928 0.00123 � 0.000847

Sunda 8 1220 2 1 0 0 1 0.082 0.250 � 0.311 0.000205 � 0.000291

Pardofelis

marmorata

All 11 1220 6 42 1 0 43 3.52 18.545 � 8.918 0.0152 � 0.00825

Indochina 8 1220 5 4 0 0 4 0.33 1.500 � 1.006 0.00123 � 0.000939

Sunda 3 1220 1 0 0 0 0 0 0 0

Panthera

tigris†
All 100 4078 25 — — — 54 1.32 10.11 � 4.66 0.00248 � 0.00127

Indochina 32 4078 4 3 0 0 3 0.074 0.54 � 0.46 0.000132 � 0.000125

Malay 22 4078 5 9 1 0 10 0.25 4.83 � 2.45 0.00118 � 0.000670

Panthera

pardus

All‡ 69 727 33 — — — 50 6.88 8.67 � 4.40 0.0121 � 0.00620

Indochina 36 613 6 6 1 0 7 1.14 1.529 � 0.940 0.00250 � 0.00170

*Ti, Transitions; Tv, Transversions; I, Indels.
†Data of the tiger from Table 6 in Luo et al. (2004).
‡Data of all leopards from Table 5 of Uphyrkina et al. (2001).

© 2014 John Wiley & Sons Ltd

SOUTHEAST ASIAN FELID PHYLOGEOGRAPHY 2075



generations sampled every 100 generations. Conver-

gence of MCMC analyses was assessed in AWTY

(Nylander et al. 2008), and reliability of parameters esti-

mates was examined in the diagnostic program TRACER

v1.5 (Rambaut & Drummond 2009), with the fraction of

25% burn-in samples based on a pilot study (Fig. S5,

Fig. S6, Supporting information).

The time to the most recent common ancestor

(TMRCA) for the mtDNA and Y haplotypes was esti-

mated using BEAST v1.6.2 (Drummond & Rambaut 2007).

The speciation times estimated previously (Johnson

et al. 2006) of Prionailurus bengalensis and P. viverrinus

(1.74–3.82 MYA), and of Pardofelis temminckii and

P. marmorata (4.27–8.42 MYA) were used as calibrations.

In addition, a 2.44–5.79 MYA divergence between Pan-

thera tigris and P. pardus was used in Y-derived trees

and the divergence time of Prionailurus bengalensis,

P. viverrinus and P. planiceps (2.04–4.31 MYA) was used

in trees inferred from mtDNA haplotypes. Nucleotide

substitution and rate heterogeneity models were also

estimated from JMODELTEST, and an uncorrelated lognor-

mal relaxed clock model was implemented to allow for

rate heterogeneity among lineages and also inspected as

an indication of the extent to which our data accorded

with the molecular clock model. A Yule speciation pro-

cess that assumes a constant speciation rate per lineage

was adopted for species-level phylogenies. With the

combined data set, substitution models and clock mod-

els of the mtDNA and Y-chromosome sequences were

independent. All BEAST MCMC analyses were performed

with four independent runs simultaneously for

10 000 000 iterations. Samples were drawn every 10 000

steps and a burn-in of the first 10% was discarded.

Validity of convergence and sample estimates were

inspected in TRACER. All runs from one analysis pro-

duced the same topology and parameters distributions;

thus, runs were combined to generate the final values

of TMRCA and a consensus tree.

Signatures of past population dynamics were investi-

gated for mtDNA haplotypes using Bayesian Skyline

Plot model in BEAST. Site model parameters were esti-

mated, respectively, for different species populations.

For the Indochinese leopard cat, Indochinese Asiatic

golden cat and Sundaic leopard cat, the number of

groups (m) was set to six and for the Indochinese fish-

ing cat population the group number was specified to

four, with Piecewise-linear Skyline Model and ran-

domly generated starting trees. For all populations, the

strict-clock model was implemented after an individual

population test and a mutation rate of 0.98% substitu-

tions per site per million years was used as previously

estimated. The MCMC chains were run for 10 000 000

generations and parameters sampled every 10 000

steps, the first 10% was discarded as burn-in. Output

examination and Bayesian Skyline reconstruction were

conducted in TRACER. Besides the Bayesian Skyline Plot,

the BEAST time-aware Bayesian skyride method was also

included in the test. All Bayesian analyses were run

until the effective sample size (ESS) of each parameter

was >200 to ensure a valid estimate of the Bayesian

marginal posterior distribution. Pairwise mismatch dis-

tributions (Rogers & Harpending 1992) were also used

to infer population dynamic histories with ARLEQUIN v3.5

(Excoffier & Lischer 2010). The goodness-of-fit of the

observed data to a simulated model of expansion was

tested with the raggedness (r) index and sum of

squared deviation (SSD). Tajima’s D and Fu’s Fs were

estimated in ARLEQUIN as additional measures for tracing

population growth dynamics.

X-linked locus sequence analyses and population
genetic indices

For the X-linked locus PLP1, the haplotype phase for a

heterozygous female was inferred by affirming common

haplotypes observed in the hemizygous males from the

same population and identifying female haplotypes

from likelihood frequencies. Statistical parsimony net-

works were then constructed using TCS v1.21 (Clement

et al. 2000) to infer phylogeographic and potential

ancestor–descendent relationships among haplotypes.

Measures of population genetic variation such as the

mean number of pairwise differences, haplotype diver-

sity and nucleotide diversity (p) for mtDNA and

nuclear DNA sequences were estimated using ARLEQUIN

v3.5 (Excoffier & Lischer 2010). Slatkin’s distances based

on Kimura 2-parameter were used to estimate popula-

tion pairwise FST (10 000 permutations for statistical sig-

nificance tests). Exact tests of population differentiation

based on haplotype frequencies were carried out using

100 000 steps in the Markov chain and 4000 dememor-

ization steps. Observed phylogeographic partitions and

estimated population genetic parameters were

employed to define major subdivisions and draw infer-

ences on the historic population history of Asian cat

species.

Results

MtDNA phylogenetic analysis

MtDNA fragments were sequenced from three seg-

ments (CytB, 16S and ATP8) from three Prionailurus spe-

cies and two segments (CytB and 16S) from two

Pardofelis species (Table 1). The ATP8 primer set ampli-

fied both nuclear (Numt) and cytoplasmic mtDNA

(Cymt) copies in Pardofelis species and was excluded

from final analyses. The mtDNA fragments were con-

© 2014 John Wiley & Sons Ltd
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catenated into 1792-bp haplotypes for Prionailurus spp.

and Pardofelis spp., with the ATP8 region of the latter

marked as missing data (Table 1, Table S4, Supporting

information). Phylogenetic analysis of mtDNA haplo-

types using maximum parsimony (MP), minimum evo-

lution (ME), maximum-likelihood (ML) and Bayesian

approaches produced congruent topologies correspond-

ing to major geographic partitions in Prionailurus spp.

and Pardofelis spp. (Fig. 2; Fig. S1, Fig. S3, Fig. S4, Sup-

porting information).

MtDNA sequences from 61 leopard cats specified 95

variable sites and defined 20 haplotypes (Table 1). Con-

sistent with previous results using fewer samples (Ta-

mada et al. 2008), these haplotypes formed two deeply

divergent haplogroups (Fig. 2A; Fig. S1, Fig. S3, Sup-

porting information). The PBE mtDNA haplogroup S

(South) consisted of six haplotypes from 23 leopard cats

exclusively from the Thai–Malay Peninsula and Borneo.

The PBE mtDNA haplogroup N (North) contained 14

haplotypes and occurred mainly in mainland Indochina

(with the exception of two of the 38 individuals, or 5%,

from the Thai-Malay Peninsula). MtDNA divergence

between leopard cat N and S haplogroups was remark-

ably large and all phylogenetic methods (MP, ML and

Bayesian) grouped the PBE mtDNA haplogroup S and

fishing cat together, with relatively high support values

(Fig. 2A). The deep divergence between leopard cat N

and S mtDNA haplogroups is comparable to the spe-

cies-level difference between the leopard cat (Prionailu-

rus bengalensis) and fishing cat (P. viverrinus).

Phylogeographic partitioning between the Thai–

Malay Peninsula and mainland Indochina was also evi-

dent in the marbled cat (Pardofelis marmorata) and Asi-

atic golden cat (P. temminckii) (Fig. 2A; Fig. S1, Fig. S4,

Supporting information). Three marbled cats from the

Thai–Malay Peninsula shared a single haplotype that

was highly divergent (PMA mtDNA haplogroup S)

from a monophyletic group of eight Indochinese mar-

bled cats (PMA mtDNA haplogroup N, five haplo-

types). Similarly, Sundaic Asiatic golden cats (PTE

mtDNA haplogroup S, N = 8) shared two haplotypes

that formed a monophyletic haplogroup distinct from

the 11 mainland Asian haplotypes (PTE mtDNA haplo-

group N, N = 30). The difference between the two

P. temminckii lineages is more shallow (8 bp changes)

than that in Prionailurus bengalensis (64 bp changes) and

P. marmorata (39 bp changes).

MtDNA sequences of ND5 from 33 leopards from

Indochina and Malaysia (the range of P.p. delacouri;

DEL in Fig. 2B) were analysed with 69 leopards

described previously (Miththapala et al. 1996; Uphyrkin-

a et al. 2001). Eight individuals from the Thai–Malay

Peninsula shared a single haplotype (DEL1) that was

also common in 14 P. p. delacouri from mainland

Indochina. This absence of phylogeographic differentia-

tion in leopards is in marked contrast with tigers, which

display very distinctive structure between the Malayan

(P. t. jacksoni) and Indochinese tiger subspecies

(P. t. corbetti) according to mitochondrial and nuclear

markers (Luo et al. 2004).

Y-chromosome haplotype analysis

Alignment of the combined intronic regions from four Y-

chromosome genes (SMCY3, SMCY7, DBY7 and UTY11;

2154 bp in total) yielded 15 haplotypes across the six

felid species. Intraspecific polymorphism was found in

all species except P. tigris (Table 2). Seven SNPs and one

indel that defined six Y-linked haplotypes were observed

in 26 leopard cat males (Table 2A, Fig. 3; Fig. S2, Sup-

porting information). One haplogroup with two haplo-

types (PbeY-E and F) was found only in individuals

from the Sundaland and was designated as PBE Y haplo-

group S. The other four haplotypes formed a monophy-

letic haplogroup (PbeY-A to D) that mainly occurred in

northern populations. PbeY-A, the most common haplo-

type was found in 64% of Indochina/China individuals

(N = 14). Malayan leopard cats displayed the highest Y-

haplotype diversity among the populations, with five of

the six Y haplotypes. Three individuals (33% of the sam-

pled population) shared haplotypes (PbeY-A, B and D)

found in the N lineage, suggesting the occurrence of

gene flow between the N and S haplogroups in this

region. The Bornean leopard cat population (N = 3) was

fixed with the unique haplotype PbeY-E.

The faster-evolving Y-STR markers may better capture

recent expansion or founder demographic events. Y-

linked microsatellite locus SMCY7-STR alleles exhibited

geographic differences in the leopard cat (Table 2A).

Seven alleles were found in 32 males, and allele sizes

were continuous (269–283 bp), missing only the 275-bp

allele. Alleles 277–283 bp were specific to the Sundaic

populations on the Thai–Malay Peninsula and Borneo,

while alleles 269–273 were mostly observed in Indochi-

nese populations. Two of the ‘northern’ alleles (269 and

271 bp) were found in 9% (N = 1) and 18% (N = 2) of

the Malayan population, respectively, similar to the pat-

tern of the more slowly evolving Y biallelic markers.

In the marbled cat, Y-chromosome distinctions

between the Sundaic and Indochinese populations

were also detected (Table 2B, Fig. 3; Fig. S2, Support-

ing information). Three individuals with the unique

PMA mtDNA haplogroup S (Fig. 2A) also shared the

PMA Y haplogroup S. This haplotype is four muta-

tions away from the PMA Y haplogroup N found

exclusively in Indochinese marbled cats (Fig. 3).

Despite limited sampling, it is striking that the alterna-

tive haplogroups of both Y and mtDNA were fixed

© 2014 John Wiley & Sons Ltd
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between Sundaic versus Indochinese marbled cats,

revealing a species-level divergence as observed

between Indochinese and Sundaic leopard cats (Fig. 3).

Very modest Y-chromosome nucleotide diversity was

observed in leopards, tigers and Asiatic golden cats,

compared with the smaller leopard cat and marbled cat

(Table 2C,D, Fig. 3; Fig. S2, Supporting information).

Three Y-SNPs depicted three haplotypes (PpaY-A, B, C)

among 75 male Asian leopards, and no Y-STR variation

was found. Eastwest geographic structure of Y haplo-

types was observed in leopards, probably reflecting his-

toric isolation patterns. Except for two SMCY7-STR

alleles, the tiger was invariant in Y-chromosome DNA

(Table 2D), consistent with the overall low genetic vari-

ability seen with mtDNA, MHC and autosomal micro-

satellite markers (Luo et al. 2004). Two haplotypes

differing at a single nucleotide site were detected in the

Asiatic golden cat, and the major haplotype (PteY-A)

20 changes
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Sunda
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PBE mt
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PBE mt 
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(A)

Fig. 2 MtDNA phylogenetic relationships among Prionailurus spp., Pardofelis spp. and Panthera spp. in Asia. (A) Phylogenetic rela-

tionships for Prionailurus spp. and Pardofelis spp. inferred with maximum parsimony (MP) from 1792 bp combined mtDNA

sequences. Trees derived from minimum evolution (ME), maximum-likelihood (ML) and Bayesian analyses have identical topologies.

Numbers below branches represent bootstrap support in percentage from 1000 replicates using the ME, MP and ML methods, fol-

lowed by posterior probabilities using Bayesian analyses (only those over 50% are indicated). Numbers above branches show the

number of changes. Codes following the branches indicate haplotype names, and text within parentheses refers to codes of the ani-

mals (Table S1, Supporting information) and the number of individuals with the same haplotype. Underlined animal codes represent

Sundaic origins of the specimens. N = North, S = South. (B) Phylogenetic relationships for Panthera pardus for 613 bp ND5 mtDNA

sequences (N = 102) including 33 Southeast Asian leopards from this study marked in dashed box and four newly identified mtDNA

haplotypes in bold.
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was observed in both Indochina and the Thai–Malay

Peninsula (Table 2C, Fig. 3). In contrast to P. bengalensis

and P. marmorata, no support for Indochina–Sunda Y-

chromosome haplogroup divergence along the Thai–

Malay Peninsula was evident in the leopard, tiger and

Asiatic golden cat (Fig. 3).

Nuclear DNA analyses

Statistical parsimony network based on PLP1 haplo-

types from six species provided additional support for

phylogeographic divergence between Indochinese and

Sundaic populations in both Pardofelis marmorata and

Prionailurus bengalensis (Table 2, Fig. 4). The similar

nonrandom frequency distribution of PLP1 haplotypes

corresponding to geographic range affirmed deep diver-

gence between the northern and southern lineages in

P. bengalensis. PbePLP-1 was found only in the Sundaic

populations. It has a 26-bp insertion not seen in other

P. bengalensis or felids. The other haplotype (PbePLP-5),

a common allele found exclusively in the Indochina/

China population, was also present in the Malayan pop-

ulation with a 42% frequency, supporting the hypothe-

sis that this region is a transition zone between

Indochinese and Sundaic populations. Likewise, the

Sundaic P. marmorata individuals (N = 3) that differed

from the Indochinese P. marmorata with both mtDNA

and Y markers, also had a fixed distinct PmaPLP-1 hap-

lotype, which was one nucleotide different from the

Indochinese haplotype PmaPLP-2.

Population genetic structure

To further validate the Indochinese–Sundaic divergence,

pairwise FST was calculated from multilocus haplotype

frequency distributions with comparable population
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Fig. 2 Continued
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samples from Indochina and Sundaland (Table 3). Pop-

ulation structure analyses based on AMOVA with mtDNA

haplotypes in Panthera pardus (Uphyrkina et al. 2001)

and P. tigris (Luo et al. 2004) were compared with

nuclear DNA data collected from this study and with

the four other smaller felid species. The extent of popu-

lation differentiation across markers with different

inheritance modes was consistent with the estimated

depth of divergence in various species. For example, in

both P. bengalensis and P. marmorata where the Indochi-

nese/Sundaic divergence seemed to be deep, pairwise

population comparisons using mtDNA, Y- and X-chro-

mosome markers all supported significant differentia-

tion. In P. temminckii and P. tigris, divergence occurred

more recently and north/south population distinctive-

ness was significant for mtDNA but not for nuclear

DNA markers, which tended to have lower nucleotide

diversity and generally reflected older vicariant events.

No significant differentiation between leopard popula-

tions from northern Indochina and the Thai–Malay Pen-

insula was observed.

Estimation of TMRCA for the mtDNA and
Y-chromosome haplotypes

Molecular dating was based on concatenated data sets

of 1792 bp mtDNA (Fig. 5A), 2154 bp Y-chromosome

DNA (Fig. 5B) and a combined mtDNA-Y data set of

6 changes
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Fig. 3 Phylogenetic relationships based on maximum parsimony (MP) of Y-chromosome haplotypes defined among six Asian felid

species based on 2154 bp combined Y-linked genes intronic sequences from SMCY, DBY and UTY. Trees derived from minimum

evolution (ME), maximum-likelihood (ML) and Bayesian analyses have identical topologies. Numbers below branches represent boot-

strap support in percentage from 1000 replicates using the ME, MP and ML methods, followed by posterior probabilities using

Bayesian analyses (only those over 50% are indicated). Numbers above branches show the number of changes. N = North, S = South.

The inset figures show the distributions and frequencies of Y haplotypes across the species range in different populations. Areas of

pie charts are proportional to population sample sizes and haplotypes are colour-coded.
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3946 bp (Fig. S8B, Supporting information). When exam-

ined in TRACER, a ucld.stdev of 1.046 and a coefficient of

variation of 1.202 from the four combined simultaneous

runs of the mtDNA data set indicated that there was

among-lineage rate heterogeneity within the mtDNA

data. In contrast to Y-haplotype data, where these values

were 0.222 and 0.210, respectively, depicting a clock-like

data set. The estimated mean rates of the relaxed molec-

ular clock were 0.98% and 0.097% substitutions per site

per MY for mtDNA and Y-chromosome sequences. The

estimated average net rates of lineage birth under a Yule

speciation process were 1.151 and 0.295 per MY, respec-

tively, showing a more rapid evolution of mtDNA

compared with nuclear DNA sequences.

Estimated divergence between the Indochinese and

Sundaic mtDNA haplogroups in P. bengalensis was

2.67 MY, while estimates of the time to the most recent

common ancestor (TMRCA) for the Indochinese and

Sundaic mtDNA haplogroups were 1.09 and 0.68 MY,

respectively (Fig. 5A; Table 3). In the Pardofelis genus,

the estimated TMRCA for the two divergent mtDNA

lineages in marbled cats was 1.88 MY, an estimate simi-

lar to that in the leopard cat. Divergence between the

Indochinese and Sundaic mtDNA haplogroups in Asi-

atic golden cats was more recent (1.19 MY), but none-

theless represented an event prior to the differentiation

between Malayan (P. t. jacksoni) and northern Indochi-

nese (P. t. corbetti) tigers (~72 000 years, Luo et al. 2004.

PviPLP-1
n = 23

Prionailurus viverrinus 
N = 16

PbePLP-5
n = 59

C/T

G/T
26bp indel

Prionailurus bengalensis
N = 53

PbePLP-1 
n = 17

Panthera pardus
N = 118

PpaPLP 
n = 167

PtiPLP 
n = 96

Panthera tigris
N = 66

PtePLP-1 
n = 37

PtePLP-2 
n = 3

PmaPLP-2 
n = 10

PmaPLP-1 
n = 3

Pardofelis temminckii
N = 33

Pardofelis marmorata       
N = 10

G/C

T/:

Pbe Malay Peninsula/Borneo
Pbe Indochina/China

Pma Indochina
Pma Malay Peninsula
Pte Indochina
Pte Malay Peninsula

Fig. 4 Statistical parsimony network depicting relationship among nine haplotypes observed for the X-linked PLP1 locus for six

Asian felids. Each circle represents a distinct haplotype and the area is proportional to the number of individuals sharing the haplo-

type. The relative frequencies of each haplotype in different populations are colour-coded after adjusting different sample sizes

across populations. The length of connecting lines is proportional to the exact nucleotide changes between haplotypes with each unit

representing one nucleotide substitution or insertion/deletion. The 26 bp insertion in PbePLP-1 and 2 is considered one-step muta-

tion. Missing haplotypes in the network are represented by small open circles.
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Estimates for Y haplotype TMRCA (Fig. 5B; Table 3)

were more recent compared with mtDNA, likely due to

selective sweeps and/or sex-biased migration patterns

that reduce levels of Y-chromosome variability in mam-

mals (Hellborg & Ellegren 2004). Consistent with matri-

lineal data, the estimated divergence time between the

Indochinese and Sundaic Y-chromosome haplogroups

was 1.36 MYA in P. bengalensis and 1.27 MYA in P. mar-

morata. These results imply that similar historic events

may have caused vicariant divergence in both species.

The timeframe of the combined mitochondrial and

Y-chromosome haplotypes was between those of the

trees derived separately from mtDNA and Y sequences

(Fig. S8, Supporting information; Table 3). In all cases,

estimated divergence between the Indochinese and Sun-

daic groups of P. bengalensis and P. marmorata occurred

2 MYA, thus affirming the role of the northern and

central Thai–Malay Peninsula in Indochinese–Sundaic

faunal differentiation.

Test for scenarios of demographic expansions

To detect past population dynamics, mitochondrial

DNA haplotypes from populations with sufficient

samples (Indochinese P. bengalensis, Sundaic P. bengal-

ensis, Indochinese P. viverrinus and Indochinese
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Fig. 5 Timescale of diversification among Asian felids estimated in BEAST, based on (A) mtDNA haplotypes (1792 bp) and (B) Y-chro-
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sented in Table 3.
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P. temminckii) were used to construct Bayesian skyline

plots (Fig. 6). The two Malayan leopard cats with

northern mitochondrial haplotypes were excluded

from this analysis due to species-level divergence

from other Sundaic individuals. Among the four pop-

ulations, Indochinese P. temminckii showed an appar-

ent pattern of growth (Fig. 6C), and its mismatch

distribution fitted a unimodal curve, indicating a pop-

ulation expansion event (Table S6, Fig. S7, Supporting

information). The negative Tajima’s D and Fu’s Fs

(Tajima’s D = �1.7962, p < 0.05; Fu’s Fs = �5.9452,

p < 0.02) were concordant with the expansion model

(Table S6, Supporting information). Similar to the

Indochinese P. temminckii population, the skyline plot

of Indochinese P. bengalensis showed a recent and

moderate increase (Fig. 6A) but its Fu’s Fs was not

significant (Fu’s Fs = �3.146, p = 0.101; Table S6, Sup-

porting information). The population curve of Sundaic

P. bengalensis trended downward, showing recent

decline (Fig. 6B). The Indochinese P. viverrinus popu-

lation probably maintained a relatively large and sta-

ble effective population size, judging from the plot

and other estimators (Fig. 6D; Table S6, Fig. S7, Sup-

porting information). BEAST time-aware Bayesian sky-

ride analysis produced similar results as the Bayesian

skyline plots.

Discussion

Patterns of genetic diversity in sympatric Southeast
Asian felids

The four smaller cat species, Prionailurus bengalensis,

P. viverrinus, Pardofelis temminckii and P. marmorata, dis-

play high nuclear and mtDNA genetic variation com-

pared with the larger Panthera tigris and P. pardus. The

tiger has very low nuclear DNA diversity, consistent

with the idea that modern tigers are derived from a

recent common ancestor after a genetic homogenization

72–108 kya. Only the more rapidly evolving mtDNA,

microsatellites, and to a certain extent, genetic variation

at the MHC, have been able to resolve tiger subspecies-

level differentiation (Luo et al. 2004). Estimates of

genetic variability in P. bengalensis are among the high-

est in Felidae, including South American small cats

(Trigo et al. 2013), puma (Culver et al. 2000), jaguar (Eiz-

irik et al. 2001), leopards (Uphyrkina et al. 2001), lions

(Antunes et al. 2008) and tigers (Luo et al. 2004).
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Very large intraspecific Y-chromosome genetic varia-

tions and lineage divergence in Prionailurus bengalensis

and Pardofelis marmorata have not been documented thus

far in other wild felids. Levels of nucleotide diversity in

mammalian Y chromosomes are generally low (20% of

that in autosomes). In a survey of 3.5 kb of Y-linked

gene intronic sequences in the Eurasian lynx (Lynx lynx),

no variable sites were found (Hellborg & Ellegren 2004).

Only one haplotype was observed from 1322 bp of SRY

from 357 widely distributed African lions (Antunes et al.

2008). The abundant genetic variability in these South-

east Asian small cat species might reflect larger effective

population sizes over a long period of time, which has

allowed diversity within a population to accumulate

and subsequent population substructure to develop over

geographic locales or maybe due to the absence of recent

selective sweeps.

Disentangling ancient vicariant divergence and recent
introgression

Multiple independent loci provide a more complete

understanding of the underlying evolutionary and

demographic processes of conspecific populations.

However, comparisons across paternal, maternal and

biparental molecular lineages require careful consider-

ations. The phylogeographical concordance of two

highly distinct lineages in the leopard cat and mar-

bled cat measured here in mtDNA, Y-chromosome

and X-linked markers, is strong evidence of a sig-

nificant and deep ancient divergence within each

species.

The hybrid zone on the Thai–Malay Peninsula for the

leopard cat following recent secondary contact is likely

male-driven, as about 30% of the Y haplotypes (PbeY-

A, B and D) are shared among Malayan and Indochi-

nese populations (Fig. 3). To a lesser extent, two Sunda-

ic leopard cats carry the ‘Indochinese’ mtDNA

haplotypes (Pbe108 and Pbe112, Fig. 2A), but none from

the Indochinese region carries any ‘Sundaic’ mtDNA

haplotype. Evidence from both the maternal and pater-

nal heritages is consistent with the hypothesis that

introgression was more likely to be from north to south,

reflecting recent expansion of the Indochinese popula-

tion into central and southern parts of the Thai-Malay

Peninsula.
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Fig. 6 Bayesian skyline plots of mtDNA sequences from Asian felids. The unit of the x axis is MYA, where the maximum time is the

mean of the estimated root height. The last glacial period (c. 110–12 kya) and last glacial maximum (LGM) are marked. The y axis

denotes Nes, the product of effective population size and generation length in MY. The solid black line shows the posterior median

estimate and the blue shading marks 95% highest posterior density limits. (A) Indochinese leopard cat population. (B) Sundaic leop-

ard cat population (Thai-Malay Peninsula and Borneo combined). (C) Indochinese Asiatic golden cat population. (D) Indochinese

fishing cat population.
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Significant intraspecific Indochinese–Sundaic
divergence

Of the six felids examined, all except the leopard have

phylogeographical structures differentiated between

Indochina and Sundaland (Table 3). Our sample size of

the marbled cat was small (N = 16), but nevertheless

revealed two highly divergent lineages (Figs 2A and 3)

comparable to interspecific divergence between other

Felidae species, indicating that the pattern is prominent

and would very likely be confirmed with larger sam-

pling. The depth of divergence is older in the leopard

cat and marbled cat than in the Asiatic golden cat, and

most recent in the tiger (Table 3).

In the leopard cat, if post-LGM (<10 000 years) isola-

tion caused the divergence observed among modern

populations, the Malayan and Indochinese populations

would be more similar genetically, as a result of geo-

graphic connectivity between the regions throughout

the Pleistocene and Holocene. By contrast, the majority

of genetic markers support a closer relationship

between Malayan and Bornean lineages than between

Malayan and Indochinese groups. Similar patterns are

also observed in gymnures (Ruedi & Fumagalli 1996),

primates (Roos et al. 2008; Meyer et al. 2011) and

rodents (Gorog et al. 2004). This concordance among

multiple, unrelated taxa is best explained by an ancient

vicariance event that separated the Indochinese and

Sundaic fauna on the Thai–Malay Peninsula, followed

by the differentiation of Sunda island populations.

In the upper Miocene (5–10 MYA), the Greater Sunda

Islands were connected with Indochina by the Thai–

Malay Peninsula during several periods of reduced

eustatic sea levels (Woodruff 2003; Woodruff & Turner

2009). Palynological records from this period found a

predominance of pollens from rain forest species and a

perhumid or extremely moist climate (Hall 1998). This

environment apparently prompted diversification and

migration in many mammals, including radiation of the

ancestors of modern felids from Southeast Asia into

unoccupied niches across continents (Johnson et al.

2006). This tropical environment persisted until the

early to mid-Pliocene.

Large-scale environmental alterations around the

Pliocene–Pleistocene turnover (2.5–2.6 MYA) may have

provided a mechanism of isolation facilitating the

speciation of Prionailurus bengalensis and P. viverrinus as

well as the intraspecific Indochinese–Sundaic lineage

divergence in P. bengalensis (Fig. 5). Such speciation and

lineage divergence events coincided with the onset of

the northern hemisphere glacial cycles due to ice vol-

ume and Indian summer monsoon change (Zhisheng

et al. 2011) and a marked increase in aridification as

shown from sediment cores (Kashiwaya et al. 2001).

Intriguingly, Indochinese–Sundaic lineage divergence in

Pardofelis marmorata and coalescence times for some lin-

eages within these species (i.e. Indochinese P. bengalen-

sis, Indochinese P. viverrinus and Pardofelis temminckii;

Fig. 5) were also associated with climate shifts of Indian

summer monsoon at 1.8 and 1.1 MYA, respectively

(Zhisheng et al. 2011), suggesting the potential influence

of climate changes on Indochinese-Sundaic vacariance.

At a regional level, the numerous rapid sea level rises

driven by climate dynamics could have directly contrib-

uted to the significant faunal differentiations between

Indochina and Sundaland (Lisiecki & Raymo 2005;

Miller et al. 2005; Woodruff & Turner 2009). Although

the revised eustatic curve suggests the Isthmus of Kra

along the Thai–Malay Peninsula was never submerged

for notable periods of time during the Pliocene and

Pleistocene as previously believed, a series of sea level

fluctuations, or 10 rapid rises of >80 m and 48 rises of

40–80 m in the last 5 MY (Woodruff & Turner 2009),

may have effectively isolated population. A 40 m rise

from the present-day sea level would have reduced by

half the width of the Peninsula and the area of habitat

available. This occurred repeatedly, compressing the

fauna on the narrow Peninsula and resulting in differ-

entiation of the populations north and south of the

impacted central Peninsula. As a consequence, the cen-

tral Thai–Malay Peninsula may have acted as a biogeo-

graphic barrier shaping regional fauna diversification

patterns in both Prionailurus bengalensis and Pardofelis

marmorata. Such allopatric divergence was likely sus-

tained by repeated isolation events associated with for-

est communities, river systems, habitat dynamics and/

or sea level rises throughout the Pleistocene (Cannon

et al. 2009).

Our data suggest that following the return of suitable

climate after the last glacial maximum, the Indochinese

leopard cat population expanded and formed a second-

ary contact zone with the Sundaic population on the

Thai–Malay Peninsula. Dispersal across two bioregions

is not surprising, as leopard cats are highly adaptable

and commonly inhabit dense secondary forest, logged

areas, rural agricultural land or the suburbs of cities

(Nowell & Jackson 1996). The Thai–Malay Peninsula is

likely a contemporary contact zone where the two pre-

viously diverged Indochinese and Sundaic lineages met,

and a mixture of both ‘northern’ and ‘southern’ genetic

signatures were observed. The direction of introgression

may have been southbound, as Indochinese signature

alleles from several loci are observed in the Malayan

population, but Sundaic haplotypes or alleles are

absent in the Indochinese population (Fig. 2A, Fig. 3,

and Fig. 4). Similarly, a morphology study also con-

firmed co-occurrence in the Thai–Malay peninsula of a

more ochre and ‘Sumatran-colouring’ pelage as well as
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a less common ‘light fawn’ Indochinese pelage (Groves

1997). In the marbled cat, however, little gene flow was

observed between the extant Indochinese and Sundaic

lineages, indicating different evolutionary histories in

responses to environmental shifts.

The Thai–Malay Peninsula is thought to represent a

recent geographic break in tigers (Luo et al. 2004). Since

population differentiation occurred at a much more

recent timescale (72 000–108 000 years), it is probably

unrelated with the above-mentioned ancient vicariance.

A plausible explanation for tiger subspecies differentia-

tion is ecological isolation of the ancestral population of

the Malayan tiger from Indochina, reinforced by genetic

drift in a relatively small population that has led to rec-

ognizable subdivisions among otherwise closely related

populations (Luo et al. 2004).

Implications to felid taxonomy and conservation

The leopard cat (P. bengalensis) is considered the most

common wild cat in Asia. Based on morphology, sev-

eral distinct island subspecies have been described,

including P. b. iriomotensis from Japan’s Iriomote island

(Masuda & Yoshida 1995), P. b. borneoensis in Borneo,

P. b. heaneyi in Palawan, P. b. javenensis in Java and Bali,

P. b. rabori in the Philippine islands of Negros, Cebu

and Panay, and P. b. sumatranus in Sumatra and the off-

shore island of Tebingtinggi (Groves 1997). Although

one mainland Asian subspecies is generally recognized,

the nominotypical P. b. bengalensis, some mainland sub-

species have been proposed, notably the Amur leopard

cat (P. b. euptilurus) of the Korean Peninsula, Russian

Far East and northeastern China (Groves 1997). In our

study, genetic patterns between Indochinese and Sunda-

ic leopard cats were distinct and supported a 2 MY

divergence between the two groups, an estimate compa-

rable to the speciation time between leopard cat and

fishing cat (1.74–3.82 MYA; Johnson et al. 2006).

The marbled cat (Pardofelis marmorata) is classified by

the IUCN Red List as vulnerable with a total population

size below 10 000 mature breeding animals and in

decline (Grassman et al. 2008). Two subspecies are cur-

rently recognized, P. m. marmorata in tropical Southeast

Asia and P. m. charltoni in Nepal. Our study has

revealed two monophyletic lineages within P. m. mar-

morata that diverged over one million years ago with

extremely limited gene flow. As with the leopard cat,

the genetic distance supports a differentiation of these

two lineages into distinct species, and more samples

originating from the Sundaland will be important to

further elucidate this distinction.

While the most common coloration in the Asiatic

golden cat is fox-red to golden brown, pelages, which

are black, brown, grey or with a distinctive rosette-spot-

ted pattern, have been reported (Nowell & Jackson

1996). Pocock (Pocock 1939) classified the spotted Asi-

atic golden cat, thus far reported only from southwest

China, as the subspecies P. t. tristis. Two other subspe-

cies, P. t. temminckii from Himalaya, mainland South-

east Asia and Sumatra, and P. t. dominicanorum from

southeast China, have been proposed. The Asiatic

golden cat samples in our study were collected across

southwest China and Southeast Asia and included three

distinct pelages (melanistic, rosette-spotted and golden

brown) that showed no correlation to genetic distinc-

tiveness as identified with neutral markers. For

instance, the spotted Asiatic golden cat is not geneti-

cally distinguishable from other individuals in south-

west China and thus such a coat pattern may represent

merely a local variant rather than a fixed character for

subspecies identification. Genetic distinction between

populations from northern Indochina and the Thai–

Malay Peninsula was evident in mtDNA lineages

(1.19 MY), a recent divergence compared with that

found in P. bengalensis and P. marmorata, but ancient

compared with Malay–Indochina divergence in the tiger

(<0.072 MY). However, such distinctiveness is not sup-

ported by nuclear DNA markers, which can be inter-

preted as male-biased migration that has facilitated

contemporary gene flow. Based on these findings, there

is modest evidence supporting subspecies differentia-

tion within the examined range of P. temminckii.

Genetic investigation of leopards from Southeast Asia

did not reveal population subdivision between northern

Indochina and the Thai–Malay Peninsula, supporting

the P. p. delacouri subspecies classification. The eight

leopards of the Thai–Malay Peninsula showed reduced

genetic variability and were not polymorphic across all

nuclear or mtDNA markers examined.

The recent, rapid radiations in Felidae were accompa-

nied by complex processes involving isolation, diver-

gence, re-emergence and even hybridization among

closely-related species (Trigo et al. 2013). Our study has

uncovered a significant aspect of Indochinese–Sundaic

divergence during Southeast Asian felid evolution, but

questions remain regarding the extent of historic genetic

connectivity within Sundaland. Based on morphological

studies, Malayan leopard cats display more similarity

with Sumatran individuals than with Bornean ones

(Groves 1997). Biogeography studies even show Indochi-

nese affinities in several Sumatran fauna, as the northern

part of the island was contiguous with southern Thai-

land during times of low sea level (Woodruff & Turner

2009). More samples from Sundaland, particularly

Sumatra, Java and Borneo, will be important to under-

stand the complete biogeographic and evolutionary his-

tory of Southeast Asian fauna. Upon further validation

with morphological evidence and large sampling, the
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potential elevation of some subspecies in Prionailurus

bengalensis and Pardofelis marmorata to species level

would seem warranted, in light of the recent proposition

of the new felid species Leopardus guttulus from Brazil

(Trigo et al. 2013). We encourage the conservation com-

munity to consider geographic separation and genetic

divergence in these wild felids when defining conserva-

tion units and establishing effective strategies to pre-

serve biodiversity in Southeast Asia.
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